

PHOTOVOLTAÏQUE ET ENVIRONNEMENT Quels impacts?

Laurence Guéroult EIE 43 / CAUE

Du Berceau à la Tombe

« de l'extraction du quartz au système PV en fin de vie »

- Les 4 phases de la vie du module photovoltaïque
 - → La Fabrication
 - → L'Installation
 - → L'Exploitation
 - → La Fin de vie

Aspects environnementaux

- L'énergie
- Les matériaux
- L'atmosphère
- L'eau
- Les sols
- La faune, la flore

La consommation d'énergie

C'est l'impact majoritaire dans le cycle de vie des systèmes photovoltaïques

- Elle est consommée essentiellement lors des phases de fabrication et de fin de vie : 2500 kWh_{FF}/kWc
 - → Production du Si et Al : 40 % de la consommation d'énergie
 - Silicium: 60 fois plus énergivore que la production du verre
 - Aluminium : production très consommatrice d'énergie
- Elle se traduit par
 - → L'épuisement des ressources fossiles
 - → L'effet de serre
 - → L'émission d'oxydes de soufre et d'azote, provoquant les pluies acides
 - → Les dommages respiratoires dus aux émissions de particules et d'oxydes d'azote

Les matériaux

• Les panneaux (pour 1 kWc ou 8 m²)

→ Silicium: 4,4 kg

→ Aluminium : 19 kg (cadre)

→ Argent: 60 g (ressources limitées)

→ Verre 4 mm 73 kg

→ Cuivre, Etain, Nickel, PVF, PET...

→ Phosphore, Bore, Plomb

L'onduleur, les câbles, la boîte de jonction...

→ Acier: 6 kg

→ Aluminium: 9,7 kg

→ Cuivre, Etain, Silicone, Brome ...

L'atmosphère

L'effet de serre

- → Fabrication globale : 70 g CO₂ eq/kWh
- → Emission spécifique de gaz à effet de serre: CF₄ (traitement du gaz à 70 %)

Emissions atmosphériques

- → Emission de gaz chlorés
- → Emission d'oxydes de soufre et d'azote, provoquant les pluies acides
- → Les dommages respiratoires dus aux émissions de particules et d'oxydes d'azote lors de la fabrication

L'eau

- Consommation
 - → 1,5 m3/kWc
- Rejets
 - → Effluents acides, basiques
- Cas des installations photovoltaïques au sol
 - → Réduction des précipitations sous les modules
 - → Imperméabilisation des sols pour voies d'accès, structures de fixation, bâtiments d'exploitation

Les sols

- Cas des installations photovoltaïques au sol
 - → Tassement des sols (tranchées des câbles, passage de véhicules lourds)
 - Assèchement sous les modules
 - → Érosion aux points d'écoulement de l'eau
 - → Emprise des terres ayant un potentiel agricole

La flore, la faune

Flore

→ Ombrage, assèchement, tassement, érosion des sols peuvent entraîner la modification de la composition végétale, voire sa destruction

Faune

- → Les clôtures:
 - modifient ou suppriment les corridors écologiques
 - modifient ou confisquent des biotopes pour certaines espèces
- → L'utilisation de surfaces et les clôtures suppriment des lieux de nidification
- → L'ombrage des panneaux favorise les espèces aimant la chaleur et la sécheresse

PHOTOVOLTAÏQUE ET **ENVIRONNEMENT**

Vers une réduction des **impacts**

Temps de retour énergétique

Durée nécessaire au système pour produire autant d'énergie qu'il en a fallu pour le construire

- 3 ans en France
- Réduction de ce temps de retour
 - Type d'installation: support incliné, support plat, support vertical
 - Type de cellules : couches minces, multi-cristallin, mono-cristallin
 - Panneaux sans cadre
 - → L'ensoleillement (ex: temps de retour < 2 ans en Europe du Sud)

- Réduction de l'énergie consommée
 - → Évolution de la technologie pour la fabrication du silicium (-70 %)
- Matériaux
 - → Réduction de l'épaisseur des plaques de silicium
 - Réutilisation des chutes
 - Modules sans cadres
 - → Utilisation de pâtes, alliages ... sans plomb
- Atmosphère
 - → Craquement à haute température des GES (CF₄) (traitement à 70 %)
 - Optimiser l'installation(orientaion,inclinaison...) pour augmenter la productivité et réduire les 70 g CO₂ eq/kWh

Eau

→ Réduction des consommations par optimisation des procédés et réutilisation

Sols

- Implantation des systèmes sur:
 - Terrains vagues
 - Surfaces artificielles (parkings...)
 - Zones industrielles
 - Sites pollués
 - Zones tampons le long de grandes artères
 - Surfaces sans intérêt faunistique ou floristique

- Faune, Flore
 - → Éloignement des biotopes
 - → Distance des modules au sol > à 0,80 m (pour homogénéité de la couverture végétale)
 - → Absence d'éclairage à grande échelle
 - → Absence de clôture ou création de corridors de passage

RECYCLAGE

- → 2007 : création de PV-CYCLE,
 - Association européenne
 - Programme de reprise et recyclage des panneaux en fin de vie
 - Membres: 70% du marché photovoltaïque européen
- → Objectifs de PV-CYCLE
 - Collecte d'au moins 65% des panneaux
 - Taux de recyclage d'au moins 85% (verre, silicium, cuivre, aluminium
- Calendrier
 - Déjà opérationnel en Allemagne
 - Opérationnel dans toute l'Europe en 2010

CONCLUSION

- Impact majeur: dépense énergétique
- Temps de retour énergétique : 3 ans
- Amélioration des technologies de fabrication pour une réduction des:
 - → Consommations d'énergie
 - Consommations de matières premières
- Amélioration des technologies de conception pour une:
 - → Augmentation de la productivité
- Rôle du maître d'ouvrage
 - Choix des facteurs favorisant la productivité optimale des panneaux